

PRISMA, APS-U- R&D BEAMLINE, PTYCHOGRAPHY, VELOCIPROBE...

Stefan Vogt

Associate Division Director, X-ray Science Division, Advanced Photon Source Principal Science Advisor, APS upgrade Adj. Assoc. Professor, Feinberg School of Medicine, Northwestern University

COHERENT DIFFRACTIVE IMAGING

Lensless method

Resolution ~ λ / angular size limited only by wavelength and signal

- Two-step process: record coherent diffraction pattern, recover object structure numerically (iterative phase retrieval)
- Sensitive to phase as well as absorption of the specimen
- Get 3D by tomographic methods; no depth of field limit
- But: must assume some information to recover phase, e.g. known object extent or illumination profile

Diffraction pattern

Reconstruction

J. Miao, Nature 400, 342 (1999)

FROM DIFFRACTION PATTERN TO IMAGE: PHASE RETRIEVAL

- Iterate between real & reciprocal space
- Reconstruct sample, beam (composed of coherent modes)

CRYO-PTYCHOGRAPHY & XRF OF CHLAMYDOMONAS REINHARDTII

Junjing Deng et al., PNAS 2015

- 5.2keV, 70nm ZP, 167x151 Cartesian grid
- 0.5s exposure, 6.5h measurement
- white spots beam damage (not careful)
- ~20 nm resolution
- => Beautiful structural visualization, strong contrast

TXM: Hummel et al, PLOS One, 2012

Chip structures

Ptychographic images of a nonproduction CMOS IC fabricated in 65-nm technology. Deng *et al*, Phys Rev B, 2017

8 Hynex DRAM, ~100 µm thick, 30 nm node

240 µm

The IARPA RAVEN Program (Rapid Analysis of Various Emerging Nanoelectronics) ====

Ptychography-based Rapid Imaging of Nano-structures with Multi-layer Assemblies (PRISMA)

RAVEN/RAVEN: Goals/Metrics

Metric	Phase-1 per BAA		Phase 2	Phase 3
IC Area	1 cm ²	1 mm²	1 cm ²	1 cm ²
Duration/Goal	24 months – Develop Test Bench Tool	24 months – Develop Test Bench Tool	24 months – Develop Alpha Prototype	12 months – Develop Beta Prototype
Time	80 days to acquire images and reconstruct all circuit layers with >90% accuracy	80 days to acquire images and reconstruct all circuit layers with >90% accuracy	40 days to acquire images and reconstruct all circuit layers with 100% accuracy	25 days to acquire images and reconstruct all circuit layers with 100% accuracy
Lateral Resolution	20 nm	20 nm	≤ 10 nm	≤ 10 nm
Vertical Resolution	20 nm	20 nm	≤ 10 nm	≤ 10 nm
Metal Layers	≤ 13	≤ 13	≤ 13	≤ 13
Reproducibility	-	-	95%	100%
Test Articles	Bare die ≥ 14 nm feature size	Bare die ≥ 14 nm feature size	Bare die, 10 nm feature size	Bare die, 10 nm feature size
IC Thickness	≥ 50 µm	≥ 50 µm	50 - 200 μm	≥ 50 - 200 µm

Both resolution and timing are very challenging goals/metrics. To meet them, it requires special imaging equipment (monochromator, microscope, detector, etc.), a powerful x-ray source with substantial photon flux, and powerful advanced computing resources.

10x10x0.1mm3 => 10PB @ 1 byte greyscale

Early Data on 22 nm Technology

Sockel LGA 1150, 3MB Cache, 22nm, 53Watt, inkl. GMA HD Grafikkern (350/1100 MHz GPU), Intel HD, inkl. Cooler

Paul Scherrer Institute

Inhomogeneous polishing trying to remove copper layer and interconnects

Copper & interconnects Active layer Silicon

> ~10 µm cylinder

Argonne -

Early Data on 22 nm Technology

Paul Scherrer Institute

Early Data on 22 nm Technology

3D resolution 14.6 nm DOI:10.1038/nature21698

Normal incidence tomography, limited to small sample volumes.

Paul Scherrer Institute

PRISMA Program - Overview

 TEAM DESCRPTION Performers: USC's Information Sciences Institute (ISI) and Dep. of Electrical Engineering – Prime Northwestern University's EE Dept Sub Stanford University's EE Dept Sub Paul Scherrer Institute (PSI) - Sub Collaborators: Intel Corporation Argonne's Advanced Photon Source (APS) [1] 	 APPROACH Non-destructive X-ray IC imaging of 1 cm² bare die up to 50 µm thick. Coherent Diffraction Imaging (Ptychography) X-ray and novel HPC algorithms. Use of IC collateral/available information to tune the imaging process parameters, and expedite the image acquisition process. Construction of a CDI-tailored microscope, detector, and high-efficiency FZPs.
 EXPECTED RESULTS PHASE-1: 2D and 3D X-ray imaging of <u>1 mm²</u> bare IC die. Establishment/completion of a RAVEN-centric X-ray endstation at ANL's APS. Imaging algorithms and HPC infrastructure. PHASE-2 & 3: 2D and 3D imaging of <u>1 cm²</u> bare IC die up to 50 µm thick. Full engagement of integrated X-ray endstation at ANL's APS for experiments. 	 SCHEDULE AND STATUS IC specimens for initial experiments currently available (Intel-provided). Initial X-ray endstation and companion instrumentation currently available. Initial experiments: June, 2017 (starting). Completion of RAVEN-centric X-ray endstation 24 months ACA (end of Phase-1). Integration of PSI-provided instrumentation at ANL's APS: 32 months ACA. Phase-2 & -3 experiments: Starting 36 mos. ACA

1. Argonne APS collaboration/involvement in PRISMA is "GFE" per BAA's instructionsArgonne

PRISMA@APS

- Prisma will access APS through either CDT or PUP
- Early access (2017 & 2018) on existing instrumentation (Velociprobe - up to 30% of available time)
 - Early experiments and data
 - Develop / prototype analysis pipeline
- Build new beamline with APS/APS-U/Prisma resources
 - Prisma will be installed at sector 28 of APS
 - Assembling package for procurement of hutches at Sector 28
 - Expect award by 6/30/2017
- Prisma @ S28 Online 2019
 - 30% beamtime dedicated to Prisma
 - Planning to optimize for high stability, high flux
 - H-DMM planned

THE VELOCIPROBE

Early Access: Velociprobe

Goal:

- To push speed limit for scanning, while retaining high stability and position control
- Ptychography: 10 nm and below
- Fluorescence: 50 nm and below

Note: focus on 2D images, but tomography capable (not laminography) Concept:

- Ultra-stable granite coarse stages
- Fast scanning of zone plate
- Low-noise, high-bandwidth, interferometerencoded control

L to R: Junjing Deng, Curt Preissner, and Chris Roehrig, also Shane Sullivan, Zhonghou Cai, Barry Lai, Joerg Maser, David Vine, Stefan Vogt ,

- 2-ID-D and 2-ID-E operate in parallel
- 2-ID-D :
 - Microfluorescence: 100-200 nm beam
 - New velociprobe instrument
- 2-ID-E: Microfluorescence: 300 nm beam

- Shared beam defining slits
- 2x 3.3cm Undulator (collinear)
- Mirror (Si, Rh, Pt stripes)
- ¹⁸ For 2-ID-D: DCM & DMM

First experiments

Optics

- Zone plate: 180 um diameter, 50 nm outmost width
- Beam stop: 65 um

OSA: 30 um Scans

- 40 nm step size
- 50 ms /point
- 8 keV x-rays

Ge particles

- Highly promising anode materials for lithium-ion batteries.
- Particle size: 500 nm 5 um

Reconstruction: 19.2 nm resolution

Reconstruction

- Ptychographic image: 12.5 nm resolution
- Focused beam: 58 nm FWHM

Test pattern

Phase of reconstructed object

VELOCIPROBE TIMELINE:

- Installed in January 2017
- Initial commissioning 2017-1 cycle (Feb-Apr)
- 2017-2 (Jun-Aug): continue commissioning + friendly 1st users
 - Prisma 3-6 days as required

Tentative plan 2017-2:

May 31^{st} – June 5^{th} June 13^{th} – June 19^{th} July 8^{th} – July 14^{th} July 25^{th} – July 31^{st} August 9^{th} – 22^{nd}

- : commissioning
- : commissioning
- : Prisma
- : tbd
- : tbd

- 2017-3 (Oct-Dec): open to GU
 Prisma 3-6 days as required
- 2018-1: GU, Prisma 3-6 days as required
- 2018-2: GU, Prisma 3-4 weeks as required
- 2018-3: GU, Prisma 4-5 weeks as required
 'end' of prisma CDT at 2-ID
- 2019-1: sector 2 down for canting (change from original plan)
- 2019-2: sector 2 commissioning (LN2 mono, HDCM, ...), friendly users
 2019-3: GU operations

Key points during phase 1

- developing data analysis pipeline, up to 20Gb/s for phase 1, 60Gb/s for phase 2 & 3
- ZPs are chromatic lenses how well do they work for ptychography with a multilayer monochromator ?
 - Alternatives: capillary optic; narrow bandwidth multilayer
- ZP parameters (size and beam divergence)?
- Tradeoff flux vs degree of spatial coherence ?
- Tradeoff illumination area vs sampling frequency ?
- Acquire data in 'tiles' what is the ideal tile size (100x100 um²) for acquisition, processing, etc ?
- Design / develop hutch (S28) for phase 2

PRISMA ENDSTATION @ S28 (APS-U R&D BL)

S28 HUTCH LAYOUT

- September 2017: award of hutch procurement
- 2017/2018: construction
- Oct 2018: shielding verification of FOE
- Oct-Dec 2018:
 - installation of BL optics (monos, etc)
 - begin commissioning
- Feb-Apr 2019: ready for installation of Prisma endstation instrument

Status of the End Station Instrument

EIGER detector: Characteristics

Single-photon counting with hybrid pixel detectors: No background and no readout noise, high dynamic range.

Paul Scherrer Institute

Pixel size	75 x 75 um ²	
Counter	4/8/12 bit	
Chip frame rate	23/12/8 kHz	
Dead time between frames	3 us	
Min. threshold (high frame rate)	4.5-5 keV	
Threshold dispersion (after trimming)	< 50 eV	
Noise	350-700 eV RMS	

DATA ACQUISITION CONSIDERATIONS:

- Assume detector operates at 13kHz: 1.1e9 measurements / day, or 2.25e10 measurements in 20 days.
- Distance between measurement spots: 0.66 microns (10.*10000./sqrt(2.25e10) = 0.66) this assumes we need 10 projections, each of which is 10x10 mm
- 66% overlap: 2 micron spot size, 50% overlap 1.3 um spot size, 5 nm resolution, 10 keV

Oversample	probe size (um)	pixel	distance (m)
3.5	2.0	1400	4.23
3.8	1.3	1000	3.85
5	2.0	2000	6.05
5.4	1.3	1400	4.23

POTENTIAL APPROACHES

'easier to implement':

- Reconstruct local 2D patches, say 50x50 um = 5700 measurements,
 - = 8.6 GB in 0.45s
- Throw away data
- Stitch 2D patches into one large 2D projection
- Reconstruct global 3D data set based on ~10 full projections

Better quality reconstruction ?

- Reconstruct local 3D volumes, local tomography based on ptychography, eg, 50x50umx10 projections= 57000 measurements, 86GB in 4.5s.
- Throw away data
- Stitch 3D patches into final 3D dataset.

REASONING

- \$2.1M in equipment money
 - Includes hutch to be used for CHEX later
- 2 FTEs starting in year 2,3
- Helps us push technology and methods that will be directly relevant for APS-U
 - Consistent, fast data handling
 - Data analysis
 - Lensless imaging

no commitment after 5 years

This upgrade will revolutionize scanning probe microscopies...

- Brightness increases of 100x and more compared to what we have today
- Micro/nanoprobes directly brightness driven
- ⇒ possible to get nearly 100% of APS flux into a 0.3x0.25 um spot !!!
- ⇒ 5nm and below for elemental mapping and with CDI/Ptychography

ACKNOWLEDGEMENTS

- J. Deng, C. Roehrig et al, Microscopy group, Argonne
- V. De Andrade, Imaging group, Argonne
- J. Damoulakis et al, USC
- D. Gursoy, Computational X-ray Science Group, Argonne
- Youssef Nashed, Ollie Cossairt, Aggelos Katsagelos, Northwestern

- Piero Pienetta, SLAC
- Chris Jacobsen, APS/NU
- Tony Levi, Richard Leahy, USC
- Oliver Bunk, Mirko Holler et al, PSI

Financial support:

- Department of Energy (Basic Energy Science)
- National Institutes of Health (NIBIB, NIGMS)

